Article All rights reserved

Integrating regional climatology, ecology, and agronomy for impact analysis and climate change adaptation of German agriculture: An introduction to the LandCaRe2020 project

One of the most decisive natural framework conditions of agriculture – the regional climate – is in transition. This requires considering climate change and climate change impact for decision making. Although this knowledge is uncertain and depends on future green-house gas emission, it is rapidly expanding and improving. Therefore, it is important to create flexible systems with adaptable data bases and analytical tools to integrate knowledge of future climate change in agronomy for impact studies and adaptation planning. The joint project LandCaRe (Land, Climate, and Resources) 2020 aimed at developing a conceptual framework and prototype of a model-based decision support system (DSS) based on improved process knowledge and stakeholder communication. The final product, the LandCaRe DSS should combine grid-based information on regional climate and land surface, robust climate impact models and socio-economic boundary conditions to develop spatially explicit climate impact scenarios. Emphasis was put on the integration of different knowledge from science and practice. Climate projections had to be adapted to the needs of impact modelling of agricultural and ecological processes at regional and farm scale. Impact modelling included new process knowledge, especially related to the CO2 fertilisation effect on crop rotations. A new Free Air Carbon Dioxide Enrichment Experiment (FACE) on the C4 plant maize was conducted during the project. A new agro-ecosystem model was developed which integrates soil–plant–atmosphere exchange and plant production to predict crop yield as well as water, carbon and nitrogen fluxes. Stakeholders included representatives of agricultural and environmental administrations, managers of agro-enterprises and large farms as well as organisations for regional planning and nature conservation. Their central common interests were future land use, water availability and management. Stakeholders from agriculture requested not only to assess potential impacts of regional climate change on yield but also to interpret climate impact on farm economy. This required the design of a farm-economy module linking effects of management and adaptation on crop yield with scenarios of costs and prices. Here an introduction to the project, components of the DSS and its further perspectives are presented.



Citation style:
Could not load citation form.

Access Statistic

Last 12 Month:


Use and reproduction:
All rights reserved