Heat-induced electrical signals affect cytoplasmic and apoplasmic pH as well as photosynthesis during propagation through the maize leaf

Grams, Thorsten E. E.; Lautner, Silke GND; Felle, Hubert H.; Matyssek, Rainer; Fromm, Jörg GND

Combining measurements of electric potential and pH with such of chlorophyll fluorescence and leaf gas exchange showed heat stimulation to evoke an electrical signal (propagation speed: 3-5 mm 1/s) that travelled through the leaf while reducing the net CO2 uptake rate and the photochemical quantum yield of both photosystems (PS). Two-dimensional imaging analysis of the chlorophyll fluorescence signal of PS 2 revealed that the yield reduction spread basipetally via the veins through the leaf at a speed of 1.6 +- 0.3 mm 1/s while the propagation speed in the intervein region was c. 50 times slower. Propagation of the signal through the veins was confirmed because PS 1, which is present in the bundle sheath cells around the leaf vessels, was affected first. Hence, spreading of the signal along the veins represents a path with higher travelling speed than within the intervein region of the leaf lamina. Upon the electrical signal, cytoplasmic pH decreased transiently from 7.0 to 6.4, while apoplastic pH increased transiently from 4.5 to 5.2. Moreover, photochemical quantum yield of isolated chloroplasts was strongly affected by pH changes in the surrounding medium, indicating a putative direct influence of electrical signalling via changes of cytosolic pH on leaf photosynthesis.

Files

Cite

Citation style:

Grams, Thorsten E. E. / Lautner, Silke / Felle, Hubert H. / et al: Heat-induced electrical signals affect cytoplasmic and apoplasmic pH as well as photosynthesis during propagation through the maize leaf. 2009.

Rights

Use and reproduction:
All rights reserved

Export