Artikel CC BY 4.0
referiert
Veröffentlicht

Hordeum vulgare differentiates its response to beneficial bacteria

GND
1243105232
Zugehörigkeit
Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Germany
Duan, Yongming;
GND
1252277237
Zugehörigkeit
Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Germany
Han, Min;
GND
1286249287
Zugehörigkeit
Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Germany
Grimm, Maja;
GND
1172102163
Zugehörigkeit
Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Germany
Schierstaedt, Jasper;
Zugehörigkeit
Justus Liebig University Giessen, Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Germany
Imani, Jafargholi;
Zugehörigkeit
University of Salento, Department of Biological and Environmental Sciences and Technologies, Italy
Cardinale, Massimiliano;
Zugehörigkeit
Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS, France
Le Jean, Marie;
Zugehörigkeit
Copenhagen University, Department of Biology, Section of Microbiology, Denmark
Nesme, Joseph;
Zugehörigkeit
Copenhagen University, Department of Biology, Section of Microbiology, Denmark
Sørensen, Søren J.;
GND
1172103542
Zugehörigkeit
Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Germany
Schikora, Adam

Background

In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored.

Results

This study used the soil-borne Ensifer meliloti, as well as Pantoea sp. and Pseudomonas sp. isolated from barley seeds, individually. The results demonstrated that those bacteria persisted in the rhizosphere but with different colonization patterns. Although root-leaf translocation was not observed, all three bacteria induced systemic resistance (ISR) against foliar fungal pathogens. Transcriptome analysis revealed that ion- and stress-related genes were regulated in plants that first encountered bacteria. Iron homeostasis and heat stress responses were involved in the response to E. meliloti and Pantoea sp., even if the iron content was not altered. Heat shock protein-encoding genes responded to inoculation with Pantoea sp. and Pseudomonas sp. Furthermore, bacterial inoculation affected the composition of seed endophytes. Investigation of the following generation indicated that the enhanced resistance was not heritable.

Conclusions

Here, using barley as a model, we highlighted different responses to three different beneficial bacteria as well as the influence of soil-borne Ensifer meliloti on the seed microbiome. In total, these results can help to understand the interaction between ISR-triggering bacteria and a crop plant, which is essential for the application of biological agents in sustainable agriculture.

Vorschau

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Rechteinhaber: The Author(s) 2023.

Nutzung und Vervielfältigung: