Article CC BY 4.0
refereed
published

Simulation-based assessment of the soil organic carbon sequestration in grasslands in relation to management and climate change scenarios

ORCID
0000-0002-3549-4632
Affiliation
Julius Kühn-Institute (JKI), Institute for Crop and Soil Science, Germany
Filipiak, Matthias;
GND
132356449
ORCID
0000-0003-2504-1987
Affiliation
Julius Kühn-Institute (JKI), Institute for Crop and Soil Science, Germany
Gabriel, Doreen;
GND
130873381
Affiliation
Julius Kühn-Institute (JKI), Institute for Crop and Soil Science, Germany
Kuka, Katrin

Soil organic carbon (SOC) is crucial for the quality and productivity of terrestrial ecosystems and its sequestration plays an important role in mitigating climate change. Understanding the effects of agricultural management under future climate on the SOC balance helps decision making in environmental policies. Thereby, grasslands will play a key role, since future climate change may prolong the vegetation period.

We used 24 representative grassland sites in Germany to assess the SOC balance obtained from the CANDY model in relation to ten management regimes, 18 future climate change scenarios and different soil types. Simulations were conducted over a period of 110 years.

For most of the selected grassland sites an increase in both air temperature and precipitation was observed in the future climate. The effect of management on the SOC balance largely exceeded the effect of soil type and climate. An increasing management intensity (i.e. three to five cuts) generally increased the SOC balance, while extensive management (i.e. two or fewer cuts) lead to SOC losses. The seasonal variation of precipitation was the most important climate metric, with increased SOC sequestration rates being observed with increasing growing season precipitation. Clay soils had the potential for both highest gains and highest losses depending on management and precipitation. Given an overall lower SOC storage potential in sands and loams, the SOC balance in those soil types varied the least in response to climate change.

We conclude that fostering SOC sequestration is possible in grassland soils by increasing management intensity, which involves increased fertilizer input and field traffic. This however may stand in conflict with other policy aims, such as preserving biodiversity. Multicriterial assessments are required to estimate the nett greenhouse gas balance and other aspects associated with these management practices at a farm scale.

Preview

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

License Holder: 2023 The Authors.

Use and reproduction: