Article CC BY 4.0
refereed
published

Chlamydia trachomatis Cell-to-Cell Spread through Tunneling Nanotubes

Tunneling nanotubes (TNTs) are transient cellular connections that consist of dynamic membrane protrusions. They play an important role in cell-to-cell communication and mediate the intercellular exchanges of molecules and organelles. TNTs can form between different cell types and may contribute to the spread of pathogens by serving as cytoplasmic corridors. We demonstrate that Chlamydia (C.) trachomatis-infected human embryonic kidney (HEK) 293 cells and other cells form TNT-like structures through which reticulate bodies (RBs) pass into uninfected cells. Observed TNTs have a life span of 1 to 5 h and contain microtubules, which are essential for chlamydial transfer. They can bridge distances of up to 50 μm between connecting neighboring cells. Consistent with the biological role for TNTs, we show that C. trachomatis spread also occurs under conditions in which the extracellular route of chlamydial entry into host cells is blocked. Based on our findings, we propose that TNTs play a critical role in the direct, cell-to-cell transmission of chlamydia.

Preview

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: