Login
en
de
Search
simple
complex
Browse
Institutions
Genres
SNDB
Persons
E-shelf
0
Open list
Register
For full functionality of this site it is necessary to enable JavaScript. Here are the
instructions how to enable JavaScript in your web browser
.
Contribution
A Machine Learning Framework for the Classification of Natura 2000 Habitat…
Article
2022
CC BY 4.0
refereed
published
A Machine Learning Framework for the Classification of Natura 2000 Habitat Types at Large Spatial Scales Using MODIS Surface Reflectance Data
Affiliation
Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a, Leipzig, Germany
Sittaro, Fabian
;
Affiliation
Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a, Leipzig, Germany
Hutengs, Christopher
;
Affiliation
Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a, Leipzig, Germany
Semella, Sebastian
;
Affiliation
Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a, Leipzig, Germany
Vohland, Michael
Category
Published in:
Remote Sensing
Vol. 14, H. 4 articlenr.:823
Volume:
14
No.:
4
Date Issued:
2022
DOI:
10.3390/rs14040823
Scopus ID:
85125791630
Language:
English
Type of Resource
:
Text
Keywords:
C5.0; Change detection; Classification; Habitat monitoring; MODIS; Natura 2000; Random Forest; Support Vector Machines
DDC subject of DNB:
333.7 Natural resources, energy and environment
Link to Raw Object:
https://www.mdpi.com/2072-4292/14/4/823/pdf
Institution:
DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Bioenergiesysteme
add to list
Actions
To edit the document, please log in.
Set access key
Cite
PlumX Metrics
Citation style:
APA (American Psychological Association 7th edition)
Elsevier - Harvard (with titles)
Springer - Basic (author-date)
DIN 1505-2 (author-date, Deutsch) - standard superseded by ISO-690
Could not load citation form.
copy citation link
copy citation link
DOI (10.3390/rs14040823)
https://doi.org/10.3390/rs14040823
Access Statistic
Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:
open graphic
Access Statistic
Rights
Use and reproduction:
Export
BibTeX
,
Endnote
,
MODS
,
MARCXML
,
RIS
,
ISI
,
PICA
,
DC
,
CSV