Artikel CC BY 4.0
referiert
Veröffentlicht

Drying ginger and preserving 6-gingerol

Zugehörigkeit
School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia.
Li, LiZhuo;
Zugehörigkeit
School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia.
Driscoll, Robert;
Zugehörigkeit
School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia.
Srzednicki, George

Ginger rhizome (Zingiber officinale) is widely used as a spice or as a medicinal plant. The major bioactive compound in fresh ginger rhizome is 6-gingerol and it is known for having a number of physiological effects. This compound is heat-sensitive and during cooking or drying will transform into 6-shogaol. Hence, the 6- gingerol content is used to evaluate the quality of dried ginger. The content of 6-gingerol during drying was measured using HPLC. Several factors that could affect the 6-gingerol content were considered and a predictive model for changes in 6-gingerol has been developed from the experimental data. The predictive model includes a single term drying model that predicts the changes of moisture content during drying. Drying time and relative humidity (ranging from 10% to 40%) impacted 6-gingerol content whereas drying air temperature (ranging from 30ºC to 60ºC) had a lesser effect. It was also found that the 6-gingerol content in fresh rhizomes was highly variable and thus required thorough testing prior to drying to be able to make the prediction more accurate.

Vorschau

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Nutzung und Vervielfältigung: