Artikel CC BY 4.0
referiert
Veröffentlicht

Variation of Glucosinolate Contents in Clubroot-Resistant and -Susceptible Brassica napus Cultivars in Response to Virulence of Plasmodiophora brassicae

GND
1058931261
Zugehörigkeit
Julius Kühn-Institute (JKI), Institute of Plant Protection in Field Crops and Grassland, Germany
Zamani-Noor, Nazanin;
Zugehörigkeit
Leibniz University Hannover, Institute of Botany, Germany
Hornbacher, Johann;
Zugehörigkeit
Leibniz University Hannover, Institute of Botany, Germany
Comel, Christel Joy;
Zugehörigkeit
Leibniz University Hannover, Institute of Botany, Germany
Papenbrock, Jutta

The present study investigated the changes in total and individual glucosinolates (GSLs) in roots and leaves of different clubroot-resistant and -susceptible oilseed rape cultivars following artificial inoculation with Plasmodiophora brassicae isolates with different virulence. The results showed significant differences in clubroot incidence and severity as well as in the amount of total and individual glucosinolates between oilseed rape cultivars in response to virulence of the pathogen. Single among with total aliphatic and total indolic glucosinolate contents were significantly lower in leaves of susceptible cultivars compared to resistant ones due to the infection. Similarly, single and total aliphatic as well as indolic glucosinolate contents in roots were lower in susceptible cultivars compared to resistant cultivars analyzed. The different isolates of P. brassicae seem to differ in their ability to reduce gluconasturtiin contents in the host. The more aggressive isolate P1 (+) might be able to suppress gluconasturtiin synthesis of the host in a more pronounced manner compared to the isolate P1. A possible interaction of breakdown products of glucobrassicin with the auxin receptor transport inhibitor response 1 (TIR1) is hypothesized and its possible effects on auxin signaling in roots and leaves of resistant and susceptible cultivars is discussed. A potential interplay between aliphatic and indolic glucosinolates that might be involved in water homeostasis in resistant cultivars is explained.

Vorschau

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Rechteinhaber: 2021 by the authors.

Nutzung und Vervielfältigung: