Priming negatively affects feeding behaviour and aphid biomass of Rhopalosiphum padi on barley

Wehner, Gwendolin GND; Schikora, Adam GND; Ordon, Frank GND; Will, Torsten GND

Plants have developed numerous strategies for responding to abiotic and biotic stresses. In particular, the microbiota surrounding plants may have a positive effect on plant stress responses. One is the reaction to rhizobacteria, which can lead to induced systemic resistance. Gram-negative soil bacteria that produce N-acyl homoserine lactones (AHL), for example, Ensifer meliloti, induce a primed state in plants that is part of the inducible resistance phenomenon. Observing Rhopalosiphum padi feeding behaviour on a priming sensitive barley genotype, treated with the AHL-producing E. meliloti strain expR + ch, using electrical penetration graph technique showed decreased ingestion of food. Aphids appear to overcome this effect within the eight-hour observation period, possibly explaining the absence of differences of reproduction. Reproduction was observed for a period of 14 days on primed and control-treated plants. Long-term observations over a period of 40 days after aphid infestation showed a lower aphid biomass in contrast to a control group, interpreted as delayed population growth, and an increase in the biomass of barley plants. Priming-related genotypic effects of the defence response to aphids were observed, with no beneficial effects on the plant genotype when its sensitivity to priming was low. Previously, an AHL-priming sensitive barley genotype showed enhanced resistance against fungi when primed with the expR + ch strain of E. meliloti. The present study reports the same effect against R. padi. These findings suggest that sensitivity to AHL-priming may represent a new approach for plant breeding, targeting multiple pests in parallel by induced plant resistance.

Preview

Cite

Citation style:

Wehner, Gwendolin / Schikora, Adam / Ordon, Frank / et al: Priming negatively affects feeding behaviour and aphid biomass of Rhopalosiphum padi on barley. 2021.

Rights

Use and reproduction:

Export