Predation risk triggers copepod small-scale behavior in the Baltic Sea

Möller, Klas Ove; St. John, Michael A. GND; Temming, Axel GND; Diekmann, Rabea GND; Peters, Janna GND; Floeter, Jens GND; Sell, Anne Friederike GND; Herrmann, Jens-Peter GND; Gloe, Dominik; Schmidt, Jörn Oliver GND; Hinrichsen, Hans-Harald GND; Möllmann, Christian GND

Predators not only have direct impact on biomass but also indirect, non-consumptive effects on the behavior their prey organisms. A characteristic response of zooplankton in aquatic ecosystems is predator avoidance by diel vertical migration (DVM), a behavior which is well studied on the population level. A wide range of behavioral diversity and plasticity has been observed both between- as well as within-species and, hence, investigating predator–prey interactions at the individual level seems therefore essential for a better understanding of zooplankton dynamics. Here we applied an underwater imaging instrument, the video plankton recorder (VPR), which allows the non-invasive investigation of individual, diel adaptive behavior of zooplankton in response to predators in the natural oceanic environment, providing a finely resolved and continuous documentation of the organisms’ vertical distribution. Combing observations of copepod individuals observed with the VPR and hydroacoustic estimates of predatory fish biomass, we here show (i) a small-scaleDVMof ovigerous Pseudocalanus acuspes females in response to its main predators, (ii) in-situ observations of a direct short-term reaction of the prey to the arrival of the predator and (iii) in-situ evidence of pronounced individual variation in this adaptive behavior with potentially strong effects on individual performance and ecosystem functioning.

Preview

Cite

Citation style:

Möller, Klas / St. John, Michael / Temming, Axel / et al: Predation risk triggers copepod small-scale behavior in the Baltic Sea. 2020.

Rights

Use and reproduction:

Export