Article CC BY-NC 4.0

Description and evolution of wood anatomical characters in the ebony wood genus Diospyros and its close relatives (Ebenaceae): a first step towards combatting illegal logging

The typical black coloured ebony wood (Diospyros, Ebenaceae) is desired as a commercial timber because of its durable and aesthetic properties. Surprisingly, a comprehensive wood anatomical overview of the genus is lacking, making it impossible to fully grasp the diversity in microscopic anatomy and to distinguish between CITES protected species native to Madagascar and the rest. We present the largest microscopic wood anatomical reference database for ebony woods and reconstruct evolutionary patterns in the microscopic wood anatomy within the family level using an earlier generated molecular phylogeny. Wood samples from 246 Diospyros species are described based on standardised light microscope observations. For the ancestral state reconstruction, we selected eight wood anatomical characters from 88 Ebenaceae species (including 29 Malagasy Diospyros species) that were included in the most recently reconstructed family phylogeny. Within Diospyros, the localisation of prismatic crystals (either in axial parenchyma or in rays) shows the highest phylogenetic value and appears to have a biogeographical signal. The molecular defined subclade Diospyros clade IX can be clearly distinguished from other ebony woods by its storied structure. Across Ebenaceae, Lissocarpa is distinguishable from the remaining genera by the combined presence of scalariform and simple vessel perforation plates, and Royena typically has silica bodies instead of prismatic crystals. The local deposition of prismatic crystals and the presence of storied structure allow identifying ebony wood species at the subgeneric level, but species-level identification is not possible. In an attempt to improve the identification accuracy of the CITES protected Malagasy woods, we applied computer vision algorithms based on microscopic images from our reference database (microscopic slides from ca. 1000 Diospyros specimens) and performed chemical profiling based on DART TOFMS.



Citation style:
Could not load citation form.

Access Statistic

Last 12 Month:


Use and reproduction: