Dynamic role of single-celled fungi in ruminal microbial ecology and activities

Zugehörigkeit
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México.
Elghandour, Mona M. Y.;
Zugehörigkeit
Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai-, 600034, Tamil Nadu, INDIA.
Khusro, Ameer;
Zugehörigkeit
Department of Animal Science, College of Agriculture, Joseph Ayo Babalola University, Ikeji-arakeji, Ilesha, Nigeria.
Adegbeye, Moyosore J.;
Zugehörigkeit
Institute of Subtropical Agriculture The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha P.O.Box 10#, Hunan, 410125, P.R. China.
Tan, Zhiliang;
Zugehörigkeit
Department of Livestock Research, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, P.O. Box 21934, Alexandria, Egypt.
Abu Hafsa, S. H.;
GND
1036650022
Zugehörigkeit
Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Food Technology and Bioprocess Engineering, Karlsruhe, Germany.
Greiner, Ralf;
Zugehörigkeit
Department of Biochemistry, Abia State University, Uturu, PMB 2000, Uturu, Abia State, Nigeria.
Ugbogu, E. A.;
Zugehörigkeit
North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA.
Anele, Uchenna Y.;
Zugehörigkeit
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México.
Salem, A. Z. M.

In ruminants, high fermentation capacity is necessary to develop more efficient ruminant production systems. Greater level of production depends on the ability of the microbial ecosystem to convert organic matter into precursors of milk and meat. This has led to increased interest by animal nutritionists, biochemists and microbiologists in evaluating different strategies to manipulate the rumen biota to improve animal performance, production efficiency and animal health. One of such strategies is the use of natural feed additives such as single-celled fungi yeast. The main objectives of using yeasts as natural additives in ruminant diets include; a) to prevent rumen microflora disorders, b) to improve and sustain higher production of milk and meat, c) to reduce rumen acidosis and bloat which adversely affect animal health and performance, d) to decrease the risk of ruminant-associated human pathogens, e) to reduce the excretion of nitrogenous-based compounds, carbon dioxide and methane. Yeast, a natural feed additive, has the potential to enhance feed degradation by increasing the concentration of volatile fatty acids during fermentation processes. In addition, microbial growth in the rumen is enhanced in the presence of yeast leading to the delivery of a greater amount of microbial protein to the duodenum and high nitrogen retention. Single-celled fungi yeast has demonstrated its ability to increase fiber digestibility and lower fecal output of organic matter due to improved digestion of organic matter, which subsequently improves animal productivity. Yeast also has the ability to alter the fermentation process in the rumen in a way that reduces methane formation. Furthermore, yeast inclusion in ruminant diets has been reported to decrease toxins absorption such as mycotoxins and promote epithelial cell integrity. This review article provides information on the impact of single-celled fungi yeast as a feed supplement on ruminal microbiota and its function to improve the health and productive longevity of ruminants. This article is protected by copyright. All rights reserved.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten