Artikel CC BY 4.0
referiert
Veröffentlicht

Trade-Off between Energy Wood and Grain Production in Temperate Alley-Cropping Systems: An Empirical and Simulation-Based Derivation of Land Equivalent Ratio

ORCID
0000-0002-3959-1835
Zugehörigkeit
Brandenburg University of Technology Cottbus–Senftenberg, Institute of Environmental Sciences, Soil Protection and Recultivation, Konrad-Wachsmann-Allee 8, 03046 Cottbus, Germany
Seserman, Diana-Maria;
Zugehörigkeit
Brandenburg University of Technology Cottbus–Senftenberg, Institute of Environmental Sciences, Soil Protection and Recultivation, Konrad-Wachsmann-Allee 8, 03046 Cottbus, Germany
Freese, Dirk;
GND
1175538035
Zugehörigkeit
Julius Kühn-Institut (JKI), Federal Research Centre of Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
Swieter, Anita;
GND
130200638
Zugehörigkeit
Julius Kühn-Institut (JKI), Federal Research Centre of Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
Langhof, Maren;
ORCID
0000-0003-2704-2588
Zugehörigkeit
CEBra—Centre for Energy Technology Brandenburg e.V., Friedlieb-Runge-Strasse 3, 03046 Cottbus, Germany
Veste, Maik

The alley-cropping systems (ACSs), which integrate parallel tree strips at varying distances on an agricultural field can result, complementarity of resource use, in an increased land-use efficiency. Practitioners’ concerns have been directed towards the productivity of such systems given a reduced area covered by agricultural crops. The land equivalent ratio (LER) serves as a valuable productivity indicator of yield performance and land-use efficiency in ACSs, as it compares the yields achieved in monocultures to those from ACSs. Consequently, the objective of this combined experimental and simulation study was to assess the tree- and crop-yields and to derive the LER and gross energy yield for two temperate ACSs in Germany under different design scenarios, i.e., tree arrangements (lee- or wind-ward) and ratios of tree area to crop area. Both LER and gross energy yields resulted in a convex curve where the maximum values were achieved when either the tree or crop component was dominant (>75% of the land area) and minimum when these components shared similar proportions of land area. The implications of several design scenarios have been discussed in order to improve the decision-making, optimization, and adaptation of the design of ACSs with respect to site-specific characteristics.

Vorschau

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Rechteinhaber: 2019 by the authors.

Nutzung und Vervielfältigung: