Artikel CC BY 4.0
referiert
Veröffentlicht

Patterns of genetic diversity and implications for in situ conservation of wild celery (Apium graveolens L. ssp. graveolens)

GND
1059147041
Zugehörigkeit
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
Frese, Lothar;
GND
1178386066
Zugehörigkeit
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
Bönisch, Maria;
GND
1059147343
Zugehörigkeit
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
Nachtigall, Marion;
Zugehörigkeit
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
Schirmak, Uta

In Germany, the wild ancestor (Apium graveolens L. ssp. graveolens) of celery and celeriac is threatened by genetic erosion. Seventy-eight potentially suitable genetic reserve sites representing differing ecogeographic units were assessed with regard to the conservation status of the populations. At 27 of the 78 sites, 30 individual plants were sampled and genetically analyzed with 16 polymorphic microsatellite makers. The Discriminant Analysis of Principal Components (DAPC) was applied to identify clusters of genetically similar individuals. In most cases (25 out of 27 occurrences) individuals clustered into groups according to their sampling site. Next to three clearly separated occurrences (AgG, AgUW, AgFEH) two large groups of inland and Baltic Sea coast occurrences, respectively, were recognized. Occurrences from the coastal part of the distribution area were interspersed into the group of inland occurrences and vice versa. The genetic distribution pattern is therefore complex. The complementary compositional genetic differentiation Δj was calculated to identify the Most Appropriate Wild Populations (MAWP) for the establishment of genetic reserves. Altogether 15 sites are recommended to form a genetic reserve network. This organisational structure appears suitable for promoting the in situ conservation of intraspecific genetic diversity and the species’ adaptability. As seed samples of each MAWP will be stored in a genebank, the network would likewise contribute to the long-term ex situ conservation of genetic resources for plant breeding.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Rechteinhaber: 2018 by the authors

Nutzung und Vervielfältigung: