Artikel Alle Rechte vorbehalten
referiert
Veröffentlicht

Cell shape characterization and classification with discrete Fourier transforms and self-organizing maps.

Zugehörigkeit
Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin 10589, Germany.
Kriegel, Fabian L.;
Zugehörigkeit
Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, Berlin 10117, Germany.
Köhler, Ralf;
Zugehörigkeit
Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, Berlin 10117, Germany.
Bayat-Sarmadi, Jannike;
Zugehörigkeit
Charité Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany.
Bayerl, Simon;
ORCID
0000-0002-7725-9526
Zugehörigkeit
Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, Berlin 10117, Germany.
Hauser, Anja E.;
Zugehörigkeit
Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, Berlin 10117, Germany.
Niesner, Raluca;
Zugehörigkeit
Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin 10589, Germany.
Luch, Andreas;
Zugehörigkeit
Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, Berlin 10117, Germany.
Cseresnyes, Zoltan

Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not possible at all. © 2017 International Society for Advancement of Cytometry.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten