Chemical stabilization of polymers: Implications for dermal exposure to additives.

Bartsch, Nastasia; Girard, M.; Schneider, L.; Weijgert, V Van De; Wilde, A.; Kappenstein, Oliver; Vieth, Bärbel; Hutzler, Christoph; Luch, Andreas

Technical benefits of additives in polymers stand in marked contrast to their associated health risks. Here, a multi-analyte method based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) was developed to quantify polymer additives in complex matrices such as low-density polyethylene (LDPE) and isolated human skin layers after dermal exposure ex vivo. That way both technical aspects and dermal exposure were investigated. The effects of polymer additivation on the material were studied using the example of LDPE. To this end, a tailor-made polymer was applied in aging studies that had been furnished with two different mixtures of phenol- and diarylamine-based antioxidants, plasticizers and processing aids. Upon accelerated thermo-oxidative aging of the material, the formation of LDPE degradation products was monitored with attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy. Compared to pure LDPE, a protective effect of added antioxidants could be observed on the integrity of the polymer. Further, thermo-oxidative degradation of the additives and its kinetics were investigated using LDPE or squalane as matrix. The half-lives of additives in both matrices revealed significant differences between the tested additives as well as between LDPE and squalane. For instance, 2-tert-butyl-6-[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol (Antioxidant 2246) showed a half-life 12 times lower when incorporated in LDPE as compared to squalane. As a model for dermal exposure of consumers, human skin was brought into contact with the tailor-made LDPE containing additives ex vivo in static Franz diffusion cells. The skin was then analyzed for additives and decomposition products. This study proved 10 polymer additives of diverse pysicochemical properties and functionalities to migrate out of the polymer and eventually overcome the intact human skin barrier during contact. Moreover, their individual distribution within distinct skin layers was demonstrated. This is exemplified by the penetration of the procarcinogenic antioxidant N-phenylnaphthalen-2-amine (Neozon D) into the viable epidermis and the permeation through the skin of the neurotoxic plasticizer N-butylbenzenesulfonamide (NBBS). In addition, the analyses of additive degradation products in the isolated skin layers revealed the presence of 2-tert-butyl-4-methylphenol in all layers after contact to a polymer with substances of origin like Antioxidant 2246. Thus, attention needs to be paid to absorption of polymer additives together with their degradation products when it comes to dermal exposure assessment.



Bartsch, Nastasia / Girard, M. / Schneider, L. / et al: Chemical stabilization of polymers: Implications for dermal exposure to additives.. 2018.


Nutzung und Vervielfältigung:
Alle Rechte vorbehalten