Artikel CC BY 4.0
referiert
Veröffentlicht

Metabolite and transcript markers for the prediction of potato drought tolerance

Zugehörigkeit
Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
Sprenger, Heike;
Zugehörigkeit
Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
Erban, Alexander;
GND
105914123X
Zugehörigkeit
Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
Seddig, Sylvia;
GND
1059141159
Zugehörigkeit
Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
Rudack, Katharina;
Zugehörigkeit
Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
Thalhammer, Anja;
Zugehörigkeit
VNU-University of Sciences, Thanh Xuan, Hanoi, Vietnam
Le, Mai Q.;
Zugehörigkeit
Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
Walther, Dirk;
Zugehörigkeit
Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
Zuther, Ellen;
Zugehörigkeit
Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
Köhl, Karin I.;
Zugehörigkeit
Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
Kopka, Joachim;
Zugehörigkeit
Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
Hincha, Dirk K.

Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions.

Vorschau

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Rechteinhaber: 2017 The Authors.

Nutzung und Vervielfältigung: