Artikel Alle Rechte vorbehalten
referiert
Veröffentlicht

Maize carbon dynamics are driven by soil erosion state and plant phenology rather than nitrogen fertilization form

Carbon (C) stored in soils represents the largest C pool of terrestrial ecosystems and consequently plays a crucial role in the global C cycle. So far, it is widely unclear to what extent different land uses and land use change influence soil C storage. The hummocky ground moraine landscape of northeastern Germany is characterized by distinct small-scale soil heterogeneity on the one hand, and intensive energy crop cultivation on the other. Both factors are assumed to significantly influence gaseous C exchange; as such, they likely drive soil organic carbon (SOC) stock dynamics in terrestrial agricultural ecosystems. To date, it is not clear to what extent N fertilization forms, which are associated with energy crop cultivation (e.g., application of biogas fermentation residues) and soil type relative to soil erosion state, influence soil C dynamics, nor is it clear whether one of these factors is more important than the other. To investigate the influence of soil erosion state and N fertilization form on soil C dynmaics, we present dynamic and seasonal net ecosystem carbon balances (NECB) as a proxy for changes in soil organic carbon stocks. Measurements were conducted for maize (Zea mays L.) at five sites in the “CarboZALF-D” experimental field during the 2011 growing season. Measurement sites represent different soil erosion states (non-eroded Albic Luvisols, extremely eroded Calcaric Regosols and depositional Endogleyic Colluvic Regosols) and N fertilization forms (100% mineral fertilizer, 50% mineral and 50% organic fertilizer, and 100% organic fertilizer). Fertilization treatments were established on the Albic Luvisol. Net ecosystem CO2 exchange (NEE) and ecosystem respiration (Reco) were measured every four weeks using a dynamic flow-through non-steady-state closed manual chamber system...

Dateien

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten