Artikel Open-Access
referiert
Veröffentlicht

Comparison of conventional eight-point crown projections with LiDAR-based virtual crown projections in a temperate old-growth forest

Introduction Sight-based field measurements of tree crown projection area and canopy height are common praxis in forest science but difficult to validate. We quantified their measurement errors based on the virtual representation of an 11-species old-growth forest provided by high-resolution terrestrial LIDAR (light detection and ranging) easurements. Objectives Based on the expectations (a) that violations of the triangulation theory are the main error source of height measurements, and (b) that approximations of tree crowns with fixed angles are not flexible enough for irregular crown shapes in natural stands, we investigated the relative accuracies of triangulation measurements of height of crown base (BT) vs. tree height (HT) and of different crown projection methods. BT (~c0.52 m) showed lower measurement errors than HT (~c2.4 m). Results and conclusions Larger deviations between fieldmeasured and virtually executed crown projections could partly be attributed to structural differences of the crowns that were two-dimensionally quantified as space capture index (SCI). The largest deviations between both methods occurred on suppressed tree crowns and tall Quercus robur trees in the stand. Because of the method-inherent underestimation of crown projections with fixed angular grid, we propose the use of flexible angles by trained operators.

Vorschau

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Rechte

Nutzung und Vervielfältigung: