A Rickettsiella bacterium from the hard tick, Ixodes woodi: Molecular taxonomy combining multilocus sequence typing (MLST) with significance testing

Leclerque, Andreas GND; Kleespies, Regina G. GND

Hard ticks (Acari: Ixodidae) are known to harbour intracellular bacteria from several phylogenetic groups that can develop both mutualistic and pathogenic relationships to the host. This is of particular importance for public health as tick derived bacteria can potentially be transmitted to mammals, including humans, where e.g. Rickettsia or Coxiella act as severe pathogens. Exact molecular taxonomic identification of tick associated prokaryotes is a necessary prerequisite of the investigation of their relationship to both the tick and possible vertebrate hosts. Previously, an intracellular bacterium had been isolated from a monosexual, parthenogenetically reproducing laboratory colony of females of the hard tick, Ixodes woodi Bishopp, and had preliminarily been characterized as a “Rickettsiella-related bacterium”. In the present molecular taxonomic study that is based on phylogenetic reconstruction from both 16 S ribosomal RNA and protein-encoding marker sequences complemented with likelihood-based significance testing, the bacterium from I. woodi has been identified as a strain of the taxonomic species Rickettsiella grylli. It is the first time that a multilocus sequence typing (MLST) approach based on a four genes comprising MLST scheme has been implemented in order to classify a Rickettsiella-like bacterium to this species. The study demonstrated that MLST holds potential for a better resolution of phylogenetic relationships within the genus Rickettsiella, but requires sequence determination from further Rickettsiella-like bacteria in order to complete the current still fragmentary picture of Rickettsiella systematics.

Files

Cite

Citation style:

Leclerque, Andreas / Kleespies, Regina: A Rickettsiella bacterium from the hard tick, Ixodes woodi: Molecular taxonomy combining multilocus sequence typing (MLST) with significance testing. 2012.

Rights

Use and reproduction:

Export