Imaging live bee brains using minimally-invasive diagnostic radioentomology

Greco, M.K.; Tong, J.; Soleimani, M.; Bell, D.; Schäfer, Marc Oliver GND

The sensitivity of the honey bee, Apis mellifera L. (Hymeonoptera: Apidae), brain volume and density to behavior (plasticity) makes it a great model for exploring the interactions between experience, behavior, and brain structure. Plasticity in the adult bee brain has been demonstrated in previous experiments. This experiment was conducted to identify the potentials and limitations of MicroCT (micro computed tomograpy) scanning "live" bees as a more comprehensive, noninvasive method for brain morphology and physiology. Bench-top and synchrotron MicroCT were used to scan live bees. For improved tissue differentiation, bees were fed and injected with radiographic contrast. Images of optic lobes, ocelli, antennal lobes, and mushroom bodies were visualized in 2D and 3D rendering modes. Scanning of live bees (for the first time) enabled minimally-invasive imaging of physiological processes such as passage of contrast from gut to haemolymph, and preliminary brain perfusion studies. The use of microCT scanning for studying insects (collectively termed 'diagnostic radioentomology', or DR) is increasing. Our results indicate that it is feasible to observe plasticity of the honey bee brain in vivo using diagnostic radioentomology, and that progressive, real-time observations of these changes can be followed in individual live bees. Limitations of live bee scanning, such as movement errors and poor tissue differentiation, were identified; however, there is great potential for in-vivo, non-invasive diagnostic radioentomology imaging of the honey bee for brain morphology and physiology.

Preview

Cite

Citation style:

Greco, M.K. / Tong, J. / Soleimani, M. / et al: Imaging live bee brains using minimally-invasive diagnostic radioentomology. 2012.

Rights

Use and reproduction:

Export