Article All rights reserved

Inhalation exposure of children to fragrances present in scented toys

When utilized in the perfuming of children's toys, fragrances capable of inducing contact allergy in human skin may also become bioavailable to children via the inhalation route. The aim of this study was to determine the area-specific emission rates of 24 fragrances from a plasticized PVC reference material that was meant to mimic a real plastic toy. This material was introduced into an emission chamber for 28 days at handling conditions or at worst-case conditions. As a result, fragrances can be separated into three categories according to their emission rates ranging from 0.0041 to 16.2 mg/m(2) x h, i.e., highly volatile, semivolatile, and low-volatile compounds. Compounds of the first and second categories were monitored with decreasing emission rates. Substances of the third category were detected with increasing emission rates over time. Further, higher temperatures led to higher emission rates. The emission concentration of fragrances from four real scented toys varied between 1.10 and 107 mug/m(3) at day 1 in the test chamber. Therefore, short-term inhalation exposure to fragrances originating from toys was in the range of 0.53-2700 ng/kg BW/d for the children of age 1 and older. Long-term exposure to these fragrances was calculated in the range of 2.2-220 ng/kg BW/d. PRACTICAL IMPLICATIONS: Besides household products and cosmetics, fragrances can be found in toys for children. Some fragrances are known contact allergens in the skin, but there is a lack of information on their effects in the human respiratory tract. Here, we analyzed and categorized fragrances present in a plasticized PVC reference material according to their emission profiles and volatility. We also demonstrate that volatile fragrances are being emitted from real toys and thus may get inhaled under consumer conditions to different extents.



Citation style:
Could not load citation form.

Access Statistic

Last 12 Month:


Use and reproduction:
All rights reserved